![]()
Пользовательского поиска
|
MZ2ÈÍ={cos(2·b)-2}·cos(a)2·tg(b)2·Jxy2(·wx02+wz02)+
+{2·tg(b)2·sin(b)2-2·cos(b)2+4}·sin(a)·cos(a)·Jxy2·wx0·wz0+
-Jxz2·wx0'·cos(a)/cos(b)+
+Jxz2·wz0'·sin(a)/cos(b)+
MY1ÈÍ={[Jxz2·(tg(b)4+2/cos(b)2-1)·cos(b)3+Jyz1·tg(b)+
+Jxz1]·cos(a)2+
+[[(Jx1-Jz1)-Jxy1·tg(b)]·cos(a)-Jxz1·sin(a)]·sin(a)}·wx02+
+{[[Jxy1·tg(b)+(Jz1-Jx1)]·sin(a)-Jxz1·cos(a)]·cos(a)+
+[Jxz2·cos(b)3·[2/cos(b)2+tg(b)4-1]+Jyz1·tg(b)+
+Jxz1]·sin(a)2}·wz02+
+{(Jx1-Jz1)·cos(2·a)+[1-tg(b)4-2/cos(b)2]·Jxz2·cos(b)3·
·sin(2·a)-[Jyz1·tg(b)+2·Jxz1]·2·sin(a)·cos(a)-
-Jxy1·tg(b)·cos(2·a)}·wx0·wz0+
+{[Jx2·sin(b)·cos(b)·(1+tg(b)2)+Jy1·tg(b)-(Jxy1+Jxy2)]·cos(a)-
-Jyz1·sin(a)}·wx0'+
+{[-Jx2·sin(b)·cos(b)·(1+tg(b)2)+(Jxy1+Jxy2)-Jy1·tg(b)]·sin(a)-
-Jyz1·cos(a)}·wz0'+
Ïðè
ýòîì ïîëó÷åíû ñëåäóþùèå ìàêñèìàëüíûå çíà÷åíèÿ èíåðöèîííûõ âîçìóùàþùèõ ìîìåíòîâ:
à) îñü Y1:
Ìy1èí
= Ìèí + Ìöá = 0.154 + 0.551= 0.705 Í×ì.
ïðè a = -
0.82 ðàä.
b = 1 ðàä.
wx0 = wz0 = 1 ðàä/ñ.
wx0' = wz0' = 0.2 ðàä/ñ2.
wy0 =
0.167 ðàä/c.
wy0' = 0.167 ðàä/ñ2.
Âêëàä
Ìöá â ñóììàðíûé âîçìóùàþùèé ìîìåíò ñîñòàâèë:
Ìöá
Ê = × 100 % = 78.14 %
Ìèí + Ìöá
á) îñü Z2:
Ìz2èí
= Ìèí + Ìöá = 0 + 0.07= 0.07 Í×ì.
![]() |