Пользовательского поиска
|
+Jyz1·tg(b)+Jxz1]·sin(a)2}·wz02+
+{(Jx1-Jz1)·cos(2·a)+[1-tg(b)4-2/cos(b)2]·Jxz2·cos(b)3·
·sin(2·a)-[Jyz1·tg(b)+2·Jxz1]·2·sin(a)·cos(a)-
-Jxy1·tg(b)·cos(2·a)}·wx0·wz0+
+{[Jxy2·sin(b)·cos(b)(tg(b)2+1)+(Jx2-Jz2)]·cos(a)}·wx0·wz2+
+{[Jxz2·sin(b)·cos(b)+Jxz2·sin(b)3/cos(b)+Jyz2]·cos(a)+
+[Jyz1·cos(a)-Jxy1·sin(a)]/cos(b)}·wx0·wy2-
-{[Jxz2·sin(b)·cos(b)·(1+tg(b)2)+Jyz2]·sin(a)+
+[Jyz1·sin(a)+Jxy1·cos(a)]/cos(b)}·wz0·wy2+
+{-[tg(b)2+1]·sin(b)·cos(b)·Jxy2+(Jz2-Jx2)]·sin(a)}·wz0·wz2+
+{[Jx2·sin(b)·cos(b)·(1+tg(b)2)+Jy1·tg(b)-(Jxy1+Jxy2)]
·
·cos(a)-Jyz1·sin(a)}·wx0'+
+{[-Jx2·sin(b)·cos(b)·(1+tg(b)2)+(Jxy1+Jxy2)-Jy1·tg(b)]·
·sin(a)-Jyz1·cos(a)}·wz0'+
+{Jyz2·sin(b)-Jxz2·cos(b)}·wz22-
-{Jxz2·sin(b)+Jyz2·cos(b)}·wz2'+
+{(Jx2-Jy2)·sin(b)+Jxy2·cos(b)·(tg(b)2-1)}·wz2·wy2+
+{Jx2·sin(b)2/cos(b)-2·Jxy2·sin(b)+Jy2·cos(b)+
+Jy1/cos(b)}·wy2'
Ïðè
ýòîì ïîëó÷åíû ñëåäóþùèå ìàêñèìàëüíûå çíà÷åíèÿ èíåðöèîííûõ ìîìåíòîâ.
à) îñü Y1:
Ìy1èí
= Ìèí + Ìöá = 8.1 + 1.65 = 9.75 Í×ì
ïðè a =
0.776 ðàä.
b = 1.0 ðàä.
wy2 = -2 ðàä/ñ.
wy2' = 3 ðàä/ñ2.
wz2 = 2 ðàä/ñ.
wz2' = -3 ðàä/ñ2.
wx0 = wz0 = 1 ðàä/c.
wx0' = 0.2 ðàä/c2.
wz0' = - 0.2 ðàä/c2.
wy0 = 0.167 ðàä/c.
wy0' = 0.167 ðàä/c2.
Âêëàä
Ìöá â ñóììàðíûé âîçìóùàþùèé ìîìåíò ñîñòàâèë:
Ìöá
Ê = × 100 % = 16.9 %